摘要翻译:
研究了射影态射的纤维及其相关的代数问题。通过齐次理想的syzygy矩阵的性质,刻画了齐次理想的解析扩展。线性表示的理想的幂不必线性表示,但我们确定了在取幂下保持的较弱的线性性质。
---
英文标题:
《Row Ideals and Fibers of Morphisms》
---
作者:
David Eisenbud and Bernd Ulrich
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the fibers of a projective morphism and some related algebraic problems. We characterize the analytic spread of a homogeneous ideal through properties of its syzygy matrix. Powers of linearly presented ideals need not be linearly presented, but we identify a weaker linearity property that is preserved under taking powers.
---
PDF链接:
https://arxiv.org/pdf/0705.3931