楼主: 何人来此
569 0

[电气工程与系统科学] 基于LSTM神经的非监督和半监督异常检测 网络 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
62.7954
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24656 点
帖子
4149
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-4 10:08:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
研究了一种无监督框架下的异常检测方法,并介绍了基于长短时记忆(LSTM)神经网络的异常检测算法。特别地,对于给定的变长数据序列,我们首先将这些序列通过基于LSTM的结构,得到固定长度的序列。然后,基于单类支持向量机(OC-SVM)和支持向量数据描述(SVDD)算法,为我们的异常检测器找到一个决策函数。在文献中,我们首次采用高效的梯度和二次规划训练方法,对LSTM体系结构和OC-SVM(或SVDD)算法的参数进行联合训练和优化。为了应用基于梯度的训练方法,我们对OC-SVM和SVDD算法的原始目标准则进行了修正,并证明了修正后的目标准则对原始准则的收敛性。我们还将我们的无监督公式扩展到半监督和全监督框架。因此,我们得到的异常检测算法可以处理可变长度的数据序列,同时提供高性能,特别是对时间序列数据。我们的方法是通用的,因此我们也将这种方法应用到门控递归单元(GRU)体系结构中,直接用基于GRU的结构替换基于LSTM的结构。在我们的实验中,我们证明了与传统方法相比,我们的算法获得了显著的性能增益。
---
英文标题:
《Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural
  Networks》
---
作者:
Tolga Ergen, Ali Hassan Mirza, Suleyman Serdar Kozat
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (OC-SVM) and Support Vector Data Description (SVDD) algorithms. As the first time in the literature, we jointly train and optimize the parameters of the LSTM architecture and the OC-SVM (or SVDD) algorithm using highly effective gradient and quadratic programming based training methods. To apply the gradient based training method, we modify the original objective criteria of the OC-SVM and SVDD algorithms, where we prove the convergence of the modified objective criteria to the original criteria. We also provide extensions of our unsupervised formulation to the semi-supervised and fully supervised frameworks. Thus, we obtain anomaly detection algorithms that can process variable length data sequences while providing high performance, especially for time series data. Our approach is generic so that we also apply this approach to the Gated Recurrent Unit (GRU) architecture by directly replacing our LSTM based structure with the GRU based structure. In our experiments, we illustrate significant performance gains achieved by our algorithms with respect to the conventional methods.
---
PDF链接:
https://arxiv.org/pdf/1710.09207
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:STM Applications Architecture Optimization Conventional 监督 data 准则 可变 找到

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 22:44