摘要翻译:
我们研究了扰动Black Scholes模型中风险溢价的影响。Scotti提出的扰动Black Scholes模型是在经典Black Scholes模型的基础上建立的主观波动率模型,其中交易者使用的波动率是对市场波动率的估计,并包含测量误差。在本文中,我们分析了由于存在不同于无风险收益的潜在漂移而对定价公式的修正。我们证明了在一定的参数假设下,如果资产价格是历史概率下的次鞅,那么隐含波动率呈现一个偏态结构,且最小值的位置取决于风险溢价$\λ$。
---
英文标题:
《Risk Premium Impact in the Perturbative Black Scholes Model》
---
作者:
Luca Regis and Simone Scotti
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We study the risk premium impact in the Perturbative Black Scholes model. The Perturbative Black Scholes model, developed by Scotti, is a subjective volatility model based on the classical Black Scholes one, where the volatility used by the trader is an estimation of the market one and contains measurement errors. In this article we analyze the correction to the pricing formulas due to the presence of an underlying drift different from the risk free return. We prove that, under some hypothesis on the parameters, if the asset price is a sub-martingale under historical probability, then the implied volatility presents a skewed structure, and the position of the minimum depends on the risk premium $\lambda$.
---
PDF链接:
https://arxiv.org/pdf/0806.0307