摘要翻译:
我们考虑二维单一的Rouse聚合物链,在存在沿$x$方向的横向剪切流的情况下,计算了链体中的珠子的$x$坐标直到$t$不返回其初始位置的持续概率$p_0(t)$。我们证明了持久度在后期以幂律形式衰减,$p_0(t)\sim t^{-\theta}$具有一个非平凡指数$\theta$。用独立区间近似得到的解析估计值$θ=0.359...$与数值$θ约0.360\pm 0.001$非常一致。
---
英文标题:
《Persistence of a Rouse polymer chain under transverse shear flow》
---
作者:
Somnath Bhattacharya, Dibyendu Das, Satya N. Majumdar
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider a single Rouse polymer chain in two dimensions in presence of a transverse shear flow along the $x$ direction and calculate the persistence probability $P_0(t)$ that the $x$ coordinate of a bead in the bulk of the chain does not return to its initial position up to time $t$. We show that the persistence decays at late times as a power law, $P_0(t)\sim t^{-\theta}$ with a nontrivial exponent $\theta$. The analytical estimate of $\theta=0.359...$ obtained using an independent interval approximation is in excellent agreement with the numerical value $\theta\approx 0.360\pm 0.001$.
---
PDF链接:
https://arxiv.org/pdf/705.125