摘要翻译:
介绍了一种求解复杂网络底层拓扑上流行病模型的数值方法。该方法利用了描述系统的类似平均场的速率方程,并允许在非常大的系统规模下工作,而蒙特卡罗模拟由于内存需要而无用。然后我们研究了SIR在分类网络上的流行病学模型,提供了不存在流行病阈值的数值证据。此外,还对种群的时间分布进行了分析。最后,我们强调,只要用平均场速率方程描述,本方法将允许求解任意的类流行病模型。
---
英文标题:
《Epidemic Incidence in Correlated Complex Networks》
---
作者:
Yamir Moreno, Javier B. Gomez, Amalio F. Pacheco
---
最新提交年份:
2003
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
We introduce a numerical method to solve epidemic models on the underlying topology of complex networks. The approach exploits the mean-field like rate equations describing the system and allows to work with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study the SIR epidemiological model on assortative networks, providing numerical evidence of the absence of epidemic thresholds. Besides, the time profiles of the populations are analyzed. Finally, we stress that the present method would allow to solve arbitrary epidemic-like models provided that they can be described by mean-field rate equations.
---
PDF链接:
https://arxiv.org/pdf/cond-mat/0309462