摘要翻译:
这个版本是对原论文的重大改进。它包括一个新的部分,在那里我们讨论范数tori在一些细节。本文得到了全局域上任意环面T的Chevalley模糊类数公式。在我们的公式中设置t=g_{m}可以恢复C.Chevalley的经典公式。作为一般结果的说明,我们详细讨论了范数tori。证明我们的主要定理的一个关键因素是X.Xarles关于托里的Neron-Raynaud模型的成分群的工作。
---
英文标题:
《Chevalley's ambiguous class number formula for an arbitrary torus》
---
作者:
Cristian D. Gonzalez-Aviles
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This version is a significant improvement of the original paper. It includes a new section where we discuss norm tori in some detail. The new abstract is the following: In this paper we obtain Chevalley's ambiguous class number formula for an arbitrary torus T over a global field. The classical formula of C.Chevalley may be recovered by setting T=G_{m} in our formula. As an illustration of the general result, we discuss norm tori in detail. A key ingredient of the proof of our main theorem is the work of X.Xarles on groups of components of Neron-Raynaud models of tori.
---
PDF链接:
https://arxiv.org/pdf/0711.1623