摘要翻译:
众所周知,由全局区段生成的$\pp^n$上的秩$n$向量丛的Chern类$c_i$,如果$i\leqn$,则为非负类,否则为零类。本文讨论以下问题:上述结果是否适用于更广泛的自反轮类?我们证明了对于任意秩的自反束,具有$I\geq4$的Chern数$C_i$可以任意为负;相反,对于$I\leq3$,我们用较弱的假设证明$C_I$是正的。对于由$h^0\ff$在某个非空开子集上生成的每个自反sheaf$\ff$,我们给出了$C_1$,$C_2$,$C_3$的下界,并对它们中的任何一个达到允许的最小值或接近于允许的最小值的sheaf进行了完全分类。
---
英文标题:
《Positivity of Chern Classes for Reflexive Sheaves on P^N》
---
作者:
Cristina Bertone, Margherita Roggero
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
It is well known that the Chern classes $c_i$ of a rank $n$ vector bundle on $\PP^N$, generated by global sections, are non-negative if $i\leq n$ and vanish otherwise. This paper deals with the following question: does the above result hold for the wider class of reflexive sheaves? We show that the Chern numbers $c_i$ with $i\geq 4$ can be arbitrarily negative for reflexive sheaves of any rank; on the contrary for $i\leq 3$ we show positivity of the $c_i$ with weaker hypothesis. We obtain lower bounds for $c_1$, $c_2$ and $c_3$ for every reflexive sheaf $\FF$ which is generated by $H^0\FF$ on some non-empty open subset and completely classify sheaves for which either of them reach the minimum allowed, or some value close to it.
---
PDF链接:
https://arxiv.org/pdf/0709.3218