摘要翻译:
本文导出了一个期权价格的正向偏积分微分方程,在此模型中,标的资产在定价度量下的动态变化由a-可能不连续-半鞅描述。给出了该方程解的唯一性定理。这一结果将Dupire正向方程推广到一大类带跳的非马尔可夫模型。
---
英文标题:
《Forward equations for option prices in semimartingale models》
---
作者:
Rama Cont and Amel Bentata
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We derive a forward partial integro-differential equation for prices of call options in a model where the dynamics of the underlying asset under the pricing measure is described by a -possibly discontinuous- semimartingale. A uniqueness theorem is given for the solutions of this equation. This result generalizes Dupire's forward equation to a large class of non-Markovian models with jumps.
---
PDF链接:
https://arxiv.org/pdf/1001.1380