摘要翻译:
提出了一个通用的非线性logistic方程来模拟工业增长中的长时间饱和。对于任意程度的非线性,导出了该方程的积分解。从非线性增长和纯指数增长之间的均分条件可以估计工业增长中非线性饱和开始的时间尺度。可以对一个工业组织可能达到的年度收入和人力资源含量的极限值做出精确的预测。这些变量也被建模为一个自治的一阶动力系统,其平衡条件在相关的相图中形成一个稳定的节点(吸引子态)。理论模型得到了与著名的国际公司IBM有关的所有相关数据的密切支持。
---
英文标题:
《A dynamic nonlinear model for saturation in industrial growth》
---
作者:
Arnab K. Ray
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
英文摘要:
A general nonlinear logistic equation has been proposed to model long-time saturation in industrial growth. An integral solution of this equation has been derived for any arbitrary degree of nonlinearity. A time scale for the onset of nonlinear saturation in industrial growth can be estimated from an equipartition condition between nonlinearity and purely exponential growth. Precise predictions can be made about the limiting values of the annual revenue and the human resource content that an industrial organisation may attain. These variables have also been modelled to set up an autonomous first-order dynamical system, whose equilibrium condition forms a stable node (an attractor state) in a related phase portrait. The theoretical model has received close support from all relevant data pertaining to the well-known global company, IBM.
---
PDF链接:
https://arxiv.org/pdf/0903.0282