摘要翻译:
现代神经影像技术为我们提供了对大脑结构和功能的独特见解;也就是说,大脑是如何连接的,活动在何时何地发生。使用这些技术获取的数据可以根据其网络结构进行分析,以揭示系统级的组织原则。图表示是多功能模型,其中节点与脑区相关,边缘与结构或功能连接相关。结构图模拟白质中的神经通路,白质是各区域之间的解剖学主干。功能图是基于功能连通性建立的,功能连通性是区域活动轨迹之间统计相互依赖的一种成对度量。因此,迄今为止的大多数研究都集中在分析这些反映结构或功能的图形上。图信号处理(GSP)是一个新兴的研究领域,它将记录在图节点上的信号置于底层的图结构之上。越来越多的基本操作已经被推广到图形设置,允许从一个新的观点分析信号。在这里,我们回顾了脑成像数据的GSP并讨论了它们将包含在图形本身中的脑结构与存在于图形信号中的脑功能结合起来的潜力。我们回顾了如何根据从大脑结构衍生的光谱模式概念对大脑活动进行有意义的过滤。我们还派生出其他操作,如代理数据生成或由认知系统通知的分解。总之,GSP为脑成像数据的分析提供了一个新的框架。
---
英文标题:
《A Graph Signal Processing View on Functional Brain Imaging》
---
作者:
Weiyu Huang, Thomas A. W. Bolton, John D. Medaglia, Danielle S.
Bassett, Alejandro Ribeiro, Dimitri Van De Ville
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
---
英文摘要:
Modern neuroimaging techniques provide us with unique views on brain structure and function; i.e., how the brain is wired, and where and when activity takes place. Data acquired using these techniques can be analyzed in terms of its network structure to reveal organizing principles at the systems level. Graph representations are versatile models where nodes are associated to brain regions and edges to structural or functional connections. Structural graphs model neural pathways in white matter that are the anatomical backbone between regions. Functional graphs are built based on functional connectivity, which is a pairwise measure of statistical interdependency between activity traces of regions. Therefore, most research to date has focused on analyzing these graphs reflecting structure or function. Graph signal processing (GSP) is an emerging area of research where signals recorded at the nodes of the graph are studied atop the underlying graph structure. An increasing number of fundamental operations have been generalized to the graph setting, allowing to analyze the signals from a new viewpoint. Here, we review GSP for brain imaging data and discuss their potential to integrate brain structure, contained in the graph itself, with brain function, residing in the graph signals. We review how brain activity can be meaningfully filtered based on concepts of spectral modes derived from brain structure. We also derive other operations such as surrogate data generation or decompositions informed by cognitive systems. In sum, GSP offers a novel framework for the analysis of brain imaging data.
---
PDF链接:
https://arxiv.org/pdf/1710.01135