摘要翻译:
设$\mu$为$P$维向量,设$\sigma_1$和$\sigma_2$为$P\乘以P$正定协方差矩阵。在分别从独立多元正态总体中给出大小为$N_1$和$N_2$的随机样本$N_p(\mu,\sigma_1)$和$N_p(\mu,\sigma_2)$时,Behrens-Fisher问题是求解估计未知参数$\mu$,$\sigma_1$和$\sigma_2$的似然方程。我们将证明,对于$n_1,N_2>p$,几乎可以肯定地存在完全$2p+1$的似然方程的复解。对于P=2$的情形,利用Monte Carlo模拟估计了一个典型的Behrens-Fisher问题存在多个实解的相对频率;我们发现多个真实解很少出现。
---
英文标题:
《Counting and Locating the Solutions of Polynomial Systems of Maximum
Likelihood Equations, II: The Behrens-Fisher Problem》
---
作者:
Max-Louis G. Buot, Serkan Hosten, and Donald St. P. Richards
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Let $\mu$ be a $p$-dimensional vector, and let $\Sigma_1$ and $\Sigma_2$ be $p \times p$ positive definite covariance matrices. On being given random samples of sizes $N_1$ and $N_2$ from independent multivariate normal populations $N_p(\mu,\Sigma_1)$ and $N_p(\mu,\Sigma_2)$, respectively, the Behrens-Fisher problem is to solve the likelihood equations for estimating the unknown parameters $\mu$, $\Sigma_1$, and $\Sigma_2$. We shall prove that for $N_1, N_2 > p$ there are, almost surely, exactly $2p+1$ complex solutions of the likelihood equations. For the case in which $p = 2$, we utilize Monte Carlo simulation to estimate the relative frequency with which a typical Behrens-Fisher problem has multiple real solutions; we find that multiple real solutions occur infrequently.
---
PDF链接:
https://arxiv.org/pdf/0709.0957