摘要翻译:
机器人是一种软件,通常在用户不知情的情况下安装在受感染的机器上。攻击者在命令和控制结构下远程控制机器人。最近的统计数据显示,机器人通过执行恶意活动,如电子邮件垃圾邮件或密钥记录,是对我们网络增长最快的威胁之一。然而,迄今为止,很少有机器人检测技术被开发出来。在本文中,我们研究了一种行为算法来检测使用键日志活动的单个bot。我们的方法包括使用函数调用分析来检测带有keylogging组件的bot。对指定时间窗的频率进行相关以增强he检测方案。我们用Spybot进行了一系列实验。我们的结果表明,该机器人执行的一些函数调用之间有很高的相关性,这表明系统中存在异常活动。
---
英文标题:
《Detecting Bots Based on Keylogging Activities》
---
作者:
Yousof Al-Hammadi, Uwe Aickelin
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Cryptography and Security 密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
A bot is a piece of software that is usually installed on an infected machine without the user's knowledge. A bot is controlled remotely by the attacker under a Command and Control structure. Recent statistics show that bots represent one of the fastest growing threats to our network by performing malicious activities such as email spamming or keylogging. However, few bot detection techniques have been developed to date. In this paper, we investigate a behavioural algorithm to detect a single bot that uses keylogging activity. Our approach involves the use of function calls analysis for the detection of the bot with a keylogging component. Correlation of the frequency of a specified time-window is performed to enhance he detection scheme. We perform a range of experiments with the spybot. Our results show that there is a high correlation between some function calls executed by this bot which indicates abnormal activity in our system.
---
PDF链接:
https://arxiv.org/pdf/1002.1200