摘要翻译:
我们推广了Nadel关于乘子理想束满足的一些条件的结果,这些条件用第一作者定义的一个障碍来描述。应用我们的推广,我们可以确定不允许K\\“Ahler-Einstein度量的toric del Pezzo曲面上的乘子理想束,我们还证明了可以定义K\\”Ahler-Ricci孤子的乘子理想束,并利用Tian和Zhu定义的全纯不变量推广了Nadel的结果。
---
英文标题:
《Multiplier ideal sheaves and integral invariants on toric Fano manifolds》
---
作者:
Akito Futaki and Yuji Sano
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
We extend Nadel's results on some conditions for the multiplier ideal sheaves to satisfy which are described in terms of an obstruction defined by the first author. Applying our extension we can determine the multiplier ideal sheaves on toric del Pezzo surfaces which do not admit K\"ahler-Einstein metrics. We also show that one can define multiplier ideal sheaves for K\"ahler-Ricci solitons and extend the result of Nadel using the holomorphic invariant defined by Tian and Zhu.
---
PDF链接:
https://arxiv.org/pdf/0711.0614