楼主: nandehutu2022
13975 0

[数学] 基于一对定义的非闭支撑的局部上同调 理想 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
67.0366
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24273 点
帖子
4013
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-3-6 13:15:25 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们引入了局部上同调模的推广思想,我们称之为关于一对理想(I,J)的局部上同调模,并研究了它们的各种性质。对于这种广义的局部上同调,给出了一些消失和非消失定理。我们还讨论了它与普通局部上同调的联系。
---
英文标题:
《Local cohomology based on a nonclosed support defined by a pair of
  ideals》
---
作者:
Ryo Takahashi, Yuji Yoshino and Takeshi Yoshizawa
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We introduce an idea for generalization of a local cohomology module, which we call a local cohomology module with respect to a pair of ideals (I,J), and study their various properties. Some vanishing and nonvanishing theorems are given for this generalized version of local cohomology. We also discuss its connection with the ordinary local cohomology.
---
PDF链接:
https://arxiv.org/pdf/0709.3149
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:mathematics Connections Generalized Computation connection ideals 支撑 定理 思想 理想

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-9 08:23