摘要翻译:
利用鞅和随机分析技术研究了决策者使用动态凸风险测度来评估未来报酬的连续时间最优停止问题。我们还找到了一个等价的控制与停止零和对策的鞍点,该鞍点位于选择对策终止时间的agent(“停止者”)与选择概率测度的agent(“控制器”或“自然”)之间。
---
英文标题:
《Optimal Stopping for Dynamic Convex Risk Measures》
---
作者:
Erhan Bayraktar, Ioannis Karatzas, Song Yao
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We use martingale and stochastic analysis techniques to study a continuous-time optimal stopping problem, in which the decision maker uses a dynamic convex risk measure to evaluate future rewards. We also find a saddle point for an equivalent zero-sum game of control and stopping, between an agent (the "stopper") who chooses the termination time of the game, and an agent (the "controller", or "nature") who selects the probability measure.
---
PDF链接:
https://arxiv.org/pdf/0909.4948