摘要翻译:
基于遗传算法的形式主义是迄今为止发展起来的分布式表示模型--斯摩伦斯基的张量积、全息约简表示(HRR)和二进制飞溅码(BSC)的一种替代。卷积被几何乘积所取代,几何乘积可以用几何学来解释,几何学似乎是高等概念可视化的最自然的语言。本文回顾了遗传算法模型背后的主要思想,并研究了使用内积和一个剪裁版本的矩阵表示的识别测试结果。还研究了偶然叶片相等对识别的影响。最后,将遗传算法模型的效率与已有模型进行了比较。
---
英文标题:
《Geometric Algebra Model of Distributed Representations》
---
作者:
Agnieszka Patyk
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.
---
PDF链接:
https://arxiv.org/pdf/1003.5899