摘要翻译:
当用户给对象打分时,考虑能力或声誉的复杂算法可能会产生比简单的算术平均值更公平或更准确的评分聚合。最近,许多作者提出了不同的共确定算法,在该算法中,用户和对象声誉的估计被迭代地精炼在一起,允许直接从评级数据中导出两者的精确度量。然而,证明这些方法有效性的模拟假设了一个连续的评级值,与典型的物理建模实践一致,而在大多数实际评级系统中,只使用有限的离散值范围(如5星系统)。我们对几种不同离散等级尺度的协定算法进行了对比测试,结果表明,这种看似微小的修改实际上对算法的性能有很大的影响。矛盾的是,在等级分辨率较低的地方,用户等级中增加的噪声甚至可能提高系统的整体性能。
---
英文标题:
《The effect of discrete vs. continuous-valued ratings on reputation and
ranking systems》
---
作者:
Matus Medo and Joseph Rushton Wakeling
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Retrieval 信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Databases 数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
When users rate objects, a sophisticated algorithm that takes into account ability or reputation may produce a fairer or more accurate aggregation of ratings than the straightforward arithmetic average. Recently a number of authors have proposed different co-determination algorithms where estimates of user and object reputation are refined iteratively together, permitting accurate measures of both to be derived directly from the rating data. However, simulations demonstrating these methods' efficacy assumed a continuum of rating values, consistent with typical physical modelling practice, whereas in most actual rating systems only a limited range of discrete values (such as a 5-star system) is employed. We perform a comparative test of several co-determination algorithms with different scales of discrete ratings and show that this seemingly minor modification in fact has a significant impact on algorithms' performance. Paradoxically, where rating resolution is low, increased noise in users' ratings may even improve the overall performance of the system.
---
PDF链接:
https://arxiv.org/pdf/1001.3745