摘要翻译:
我们证明了违约损失的一个大数定律,并用它来逼近大型潜在异质投资组合中违约损失的分布。证明了极限测度的密度可以求解非线性SDE,极限测度的矩可以满足无限大的SDES系统。该系统的解通过一个逆矩问题得到了SPDE的解,并得到了极限投资组合损失的分布,我们提出了它作为大型投资组合损失分布的近似。数值试验证明了该近似的准确性,并突出了它比直接蒙特卡罗模拟原始随机系统的计算优势。
---
英文标题:
《Large Portfolio Asymptotics for Loss From Default》
---
作者:
Kay Giesecke, Konstantinos Spiliopoulos, Richard B. Sowers, Justin A.
Sirignano
---
最新提交年份:
2015
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We prove a law of large numbers for the loss from default and use it for approximating the distribution of the loss from default in large, potentially heterogenous portfolios. The density of the limiting measure is shown to solve a non-linear SPDE, and the moments of the limiting measure are shown to satisfy an infinite system of SDEs. The solution to this system leads to %the solution to the SPDE through an inverse moment problem, and to the distribution of the limiting portfolio loss, which we propose as an approximation to the loss distribution for a large portfolio. Numerical tests illustrate the accuracy of the approximation, and highlight its computational advantages over a direct Monte Carlo simulation of the original stochastic system.
---
PDF链接:
https://arxiv.org/pdf/1109.1272