摘要翻译:
给出了Cohen-Macaulay局部环$(A,\m)$中$\FKM$-主理想$I$的Sally模满足等式$\E_1(I)=\E_0(I)-\ell_A(A/I)+1$的完整结构定理,其中$\E_0(I)$和$\E_1(I)$表示$I$的前两个Hilbert系数。
---
英文标题:
《The structure of Sally modules of rank one》
---
作者:
Shiro Goto, Koji Nishida, and Kazuho Ozeki
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A complete structure theorem of Sally modules of $\fkm$-primary ideals $I$ in a Cohen-Macaulay local ring $(A, \m)$ satisfying the equality $\e_1(I)=\e_0(I)-\ell_A(A/I)+1$ is given, where $\e_0(I)$ and $\e_1(I)$ denote the first two Hilbert coefficients of $I$.
---
PDF链接:
https://arxiv.org/pdf/0710.1178