摘要翻译:
本文推广了M.Mrad和N.El Karoui(2010)提出的一致效用过程的随机流构造。实用程序随机场是从一个用$\gx$表示的一般进程类中定义的。在对测试过程作极小假设和凸约束的情况下,通过构造两个同胚随机流,构造出所有一致的随机效用,其最优基准过程是给定的,且初始条件是严格递增的。证明本质上是基于变量的随机变化技术。
---
英文标题:
《Stochastic Utilities With a Given Optimal Portfolio : Approach by
Stochastic Flows》
---
作者:
N. El Karoui (CMAP, LPMA), Mohamed M'Rad (CMAP, LAGA)
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
The paper generalizes the construction by stochastic flows of consistent utility processes introduced by M. Mrad and N. El Karoui in (2010). The utilities random fields are defined from a general class of processes denoted by $\GX$. Making minimal assumptions and convex constraints on test-processes, we construct by composing two stochastic flows of homeomorphisms, all the consistent stochastic utilities whose the optimal-benchmark process is given, strictly increasing in its initial condition. Proofs are essentially based on stochastic change of variables techniques.
---
PDF链接:
https://arxiv.org/pdf/1004.5192