摘要翻译:
本文讨论了一类带有投资的Cram\'er-Lundberg模型,其中投资风险资产的价格服从一个具有漂移$a$和波动率$sigma>0的几何布朗运动。通过假定索赔规模有一个上限,我们证明了当$2a/sigma2>1$时,破产概率至少有一个代数衰减率。更重要的是,在没有这个假设的情况下,我们证明了对于所有初始资本$u$,如果$2a/sigma^2le1$,破产概率是确定的。
---
英文标题:
《A proof of a conjecture in the Cram\'er-Lundberg model with investments》
---
作者:
Shimao Fan, Sheng Xiong, Wei-Shih Yang
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
In this paper, we discuss the Cram\'er-Lundberg model with investments, where the price of the invested risk asset follows a geometric Brownian motion with drift $a$ and volatility $\sigma> 0.$ By assuming there is a cap on the claim sizes, we prove that the probability of ruin has at least an algebraic decay rate if $2a/\sigma^2 > 1$. More importantly, without this assumption, we show that the probability of ruin is certain for all initial capital $u$, if $2a/\sigma^2 \le 1$.
---
PDF链接:
https://arxiv.org/pdf/1003.0135