摘要翻译:
我们研究了多级蒙特卡罗路径模拟方法在跳扩散SDES中的推广。我们考虑具有有限速率活动的模型,使用一种跳跃适应离散化,在这种离散化中,计算跳跃时间并将其添加到标准的均匀离散时间中。多级分析中的关键部分是计算粗路径模拟和细路径模拟之间的期望收益差,时间步数是细路径模拟的两倍。如果Poisson跳变率不变,则两条路径上的跳变时间相同,多级扩展相对简单,但对于状态依赖的跳变率,跳变时间自然不同,则实现更加复杂。
---
英文标题:
《Multilevel Monte Carlo method for jump-diffusion SDEs》
---
作者:
Yuan Xia
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We investigate the extension of the multilevel Monte Carlo path simulation method to jump-diffusion SDEs. We consider models with finite rate activity, using a jump-adapted discretisation in which the jump times are computed and added to the standard uniform dis- cretisation times. The key component in multilevel analysis is the calculation of an expected payoff difference between a coarse path simulation and a fine path simulation with twice as many timesteps. If the Poisson jump rate is constant, the jump times are the same on both paths and the multilevel extension is relatively straightforward, but the implementation is more complex in the case of state-dependent jump rates for which the jump times naturally differ.
---
PDF链接:
https://arxiv.org/pdf/1106.4730