摘要翻译:
卡地亚-佩兰定理发表于1995年,以非标准分析的语言表达,它或许首次为金融资产的波动性提供了一个明确的数学定义。作为副产品,它产生了对回报手段、β系数以及夏普和特雷诺比率的新理解。来自自动控制和信号处理的新估计技术已经成功地应用于定量金融,导致了几个计算机实验,并得出了一些相当令人信服的预测。
---
英文标题:
《Volatility made observable at last》
---
作者:
Michel Fliess (LIX), C\'edric Join (INRIA Saclay - Ile de France,
CRAN), Fr\'ed\'eric Hatt
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
英文摘要:
The Cartier-Perrin theorem, which was published in 1995 and is expressed in the language of nonstandard analysis, permits, for the first time perhaps, a clear-cut mathematical definition of the volatility of a financial asset. It yields as a byproduct a new understanding of the means of returns, of the beta coefficient, and of the Sharpe and Treynor ratios. New estimation techniques from automatic control and signal processing, which were already successfully applied in quantitative finance, lead to several computer experiments with some quite convincing forecasts.
---
PDF链接:
https://arxiv.org/pdf/1102.0683