摘要翻译:
本文提出了一种新的学习方法,该方法在具身人工智能和自组织的背景下,对世界和底层模型有尽可能少的假设和限制。学习规则是从最大限度地利用感觉运动回路中的预测信息的原理推导出来的。在具有独立控制的非连通段的变长度机器人链上进行了评估。结果表明,与单个机器人的预测信息最大化相比,每个轮子的预测信息最大化会导致物理连接机器人更高的协调行为。本文的另一个重点是分析机器人链长对机器人整体行为的影响。结果表明,具有较弱控制器的长链比具有较短长度和较复杂控制器的长链性能更好。在学习过程的信息几何解释中找到并讨论了原因。
---
英文标题:
《Higher coordination with less control - A result of information
maximization in the sensorimotor loop》
---
作者:
Keyan Zahedi, Nihat Ay and Ralf Der
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Robotics 机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
This work presents a novel learning method in the context of embodied artificial intelligence and self-organization, which has as few assumptions and restrictions as possible about the world and the underlying model. The learning rule is derived from the principle of maximizing the predictive information in the sensorimotor loop. It is evaluated on robot chains of varying length with individually controlled, non-communicating segments. The comparison of the results shows that maximizing the predictive information per wheel leads to a higher coordinated behavior of the physically connected robots compared to a maximization per robot. Another focus of this paper is the analysis of the effect of the robot chain length on the overall behavior of the robots. It will be shown that longer chains with less capable controllers outperform those of shorter length and more complex controllers. The reason is found and discussed in the information-geometric interpretation of the learning process.
---
PDF链接:
https://arxiv.org/pdf/0910.2039