楼主: kedemingshi
227 0

[统计数据] 插件分类器的快速学习速率 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
87.4399
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24756 点
帖子
4155
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-8 09:32:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
最近的研究表明,在边缘(或低噪声)假设下,存在一些分类器可以达到快的超额贝叶斯风险收敛速度,即快于$n^{-1/2}$。本课题的研究工作提出了以下两个猜想:(一)可达到的最佳快速速率为$n^{-1}$;(二)插件分类器的收敛速度通常比基于经验风险最小化的分类器慢。我们证明了两个猜想都不正确。特别是,我们构造的插件分类器不仅可以实现快速,而且还可以实现超快的速率,即速率快于$n^{-1}$。我们建立了minimax下界,表明所得到的速率不能提高。
---
英文标题:
《Fast learning rates for plug-in classifiers》
---
作者:
Jean-Yves Audibert, Alexandre B. Tsybakov
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  It has been recently shown that, under the margin (or low noise) assumption, there exist classifiers attaining fast rates of convergence of the excess Bayes risk, that is, rates faster than $n^{-1/2}$. The work on this subject has suggested the following two conjectures: (i) the best achievable fast rate is of the order $n^{-1}$, and (ii) the plug-in classifiers generally converge more slowly than the classifiers based on empirical risk minimization. We show that both conjectures are not correct. In particular, we construct plug-in classifiers that can achieve not only fast, but also super-fast rates, that is, rates faster than $n^{-1}$. We establish minimax lower bounds showing that the obtained rates cannot be improved.
---
PDF链接:
https://arxiv.org/pdf/708.2321
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分类器 Multivariate Minimization classifiers Convergence conjectures 工作 rates 猜想 Fast

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 21:46