摘要翻译:
基于半参数模型中参数分量的轮廓似然,我们提出了一种迭代方法来计算参数分量的k步最大似然估计(MLE)。K步MLE的高阶收敛速度主要取决于其初始估计的精度和半参数模型中干扰泛函参数的收敛速度。此外,我们可以证明在有限个迭代步骤之后,K步MLE与正则MLE一样是渐近有效的。我们的理论对几个具体的半参数模型进行了验证。仿真研究也支持了这些理论结果。
---
英文标题:
《Convergence Rate of K-Step Maximum Likelihood Estimate in Semiparametric
Models》
---
作者:
Guang Cheng
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We suggest an iterative approach to computing K-step maximum likelihood estimates (MLE) of the parametric components in semiparametric models based on their profile likelihoods. The higher order convergence rate of K-step MLE mainly depends on the precision of its initial estimate and the convergence rate of the nuisance functional parameter in the semiparametric model. Moreover, we can show that the K-step MLE is as asymptotically efficient as the regular MLE after a finite number of iterative steps. Our theory is verified for several specific semiparametric models. Simulation studies are also presented to support these theoretical results.
---
PDF链接:
https://arxiv.org/pdf/708.3041