楼主: 可人4
193 0

[电气工程与系统科学] 非线性形状回归滤波分割结果 钙显像 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
46.5432
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24492 点
帖子
4079
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-8 13:39:50 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
提出了一种形状滤波器来修复在体神经元钙成像中获得的分割结果。这种后分割算法可以自动平滑由初步分割得到的形状,同时避免了两个神经元被计算为一个组合分量的情况。形状滤波器是利用平方根速度将形状投影到形状流形上实现的,其中形状之间的距离是基于弹性变化的。提出了两种数据驱动的加权方法,以实现形状平滑度和与数据一致性之间的折衷。通过直角坐标图的投影,对所提出的方法进行直观的比较,证明了形状滤波器的平滑能力。定量度量也证明了我们的方法优于不使用任何加权准则的模型。
---
英文标题:
《Nonlinear Shape Regression For Filtering Segmentation Results From
  Calcium Imaging》
---
作者:
Jie Wang, Zhongxiao Fu, Nasrin Sadeghzadehyazdi, Jonathan Kipnis,
  Scott T. Acton
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--

---
英文摘要:
  A shape filter is presented to repair segmentation results obtained in calcium imaging of neurons in vivo. This post-segmentation algorithm can automatically smooth the shapes obtained from a preliminary segmentation, while precluding the cases where two neurons are counted as one combined component. The shape filter is realized using a square-root velocity to project the shapes on a shape manifold in which distances between shapes are based on elastic changes. Two data-driven weighting methods are proposed to achieve a trade-off between shape smoothness and consistency with the data. Intuitive comparisons of proposed methods via projection onto Cartesian maps demonstrate the smoothing ability of the shape filter. Quantitative measures also prove the superiority of our methods over models that do not employ any weighting criterion.
---
PDF链接:
https://arxiv.org/pdf/1802.05318
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:非线性 Segmentation Mathematical Construction Quantitative 情况 投影 方法 直观 methods

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-10 01:58