摘要翻译:
在本文中,我们考虑了带跳模型中离散交易引起的套期保值误差。将Fukasawa在随机分析与金融应用(2011)331-346Birkh\“{a}User/Springer Basel AG中提出的方法推广到连续过程,我们提出了一个框架,使我们能够(渐近地)优化离散化时间。更准确地说,如果对于给定的成本函数,没有任何策略(渐近地,对于大成本)在较小成本下具有较低的均方离散化误差,则离散化规则是最优的。我们关注基于命中时间的离散化规则,并给出了该类中最优规则的显式表达式。
---
英文标题:
《Asymptotically optimal discretization of hedging strategies with jumps》
---
作者:
Mathieu Rosenbaum, Peter Tankov
---
最新提交年份:
2014
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
In this work, we consider the hedging error due to discrete trading in models with jumps. Extending an approach developed by Fukasawa [In Stochastic Analysis with Financial Applications (2011) 331-346 Birkh\"{a}user/Springer Basel AG] for continuous processes, we propose a framework enabling us to (asymptotically) optimize the discretization times. More precisely, a discretization rule is said to be optimal if for a given cost function, no strategy has (asymptotically, for large cost) a lower mean square discretization error for a smaller cost. We focus on discretization rules based on hitting times and give explicit expressions for the optimal rules within this class.
---
PDF链接:
https://arxiv.org/pdf/1108.5940