摘要翻译:
利用周期映射诱导的Siegel度量,研究了g亏格曲线的模空间M_g的曲率。根据A_g的全纯截面曲率和第二高斯映射,给出了M_g沿Schiffer变分在曲线X上的点P处的全纯截面曲率的显式公式。最后,我们将Siegel度量的Kaehler形式推广为M_g的Deligne-Mumford相容的闭流,并将其上同调类确定为Hodge丛的第一Chern类的倍数。
---
英文标题:
《Siegel metric and curvature of the moduli space of curves》
---
作者:
Elisabetta Colombo, Paola Frediani
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the curvature of the moduli space M_g of curves of genus g with the Siegel metric induced by the period map. We give an explicit formula for the holomorphic sectional curvature of M_g along a Schiffer variation at a point P on the curve X, in terms of the holomorphic sectional curvature of A_g and the second Gaussian map. Finally we extend the Kaehler form of the Siegel metric as a closed current on the Deligne-Mumford compatification of M_g and we determine its cohomology class as a multiple of the first Chern class of the Hodge bundle.
---
PDF链接:
https://arxiv.org/pdf/0805.3425