摘要翻译:
本文证明了Ruan和Bryan-Graber关于A型曲面奇点的Crepant分辨猜想的一个全属版本。我们基于一个显式计算Hurwitz-Hodge积分的方法和Liu-Xu最近对Deligne-Mumford模空间上某些交数的结果。我们还将我们的结果推广到一些三维轨道。
---
英文标题:
《Crepant resolution conjecture in all genera for type A singularities》
---
作者:
Jian Zhou
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
---
英文摘要:
We prove an all genera version of the Crepant Resolution Conjecture of Ruan and Bryan-Graber for type A surface singularities. We are based on a method that explicitly computes Hurwitz-Hodge integrals described in an earlier paper and some recent results by Liu-Xu for some intersection numbers on the Deligne-Mumford moduli spaces. We also generalize our results to some three-dimensional orbifolds.
---
PDF链接:
https://arxiv.org/pdf/0811.2023