摘要翻译:
风能在世界范围内的能源供应中扮演着越来越重要的角色。风电场的能量输出很大程度上取决于风电场的天气状况。如果能更准确地预测产量,能源供应商就能更有效地协调不同能源的协同生产,以避免代价高昂的过度生产。本文从计算机科学的角度出发,基于天气数据进行能量预测,分析了影响能量输出的重要参数及其相关性。在遗传规划工具DataModeler的基础上,采用符号回归的方法来处理不同参数之间的交互作用。我们的研究是在澳大利亚一个风电场的公开天气和能源数据上进行的。我们揭示了能量输出的不同变量之间的相关性。所得到的能量预测模型对新给出的天气数据的能量输出给出了非常可靠的预测。
---
英文标题:
《Predicting the Energy Output of Wind Farms Based on Weather Data:
Important Variables and their Correlation》
---
作者:
Katya Vladislavleva, Tobias Friedrich, Frank Neumann, Markus Wagner
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.
---
PDF链接:
https://arxiv.org/pdf/1109.1922