摘要翻译:
在这篇简短的笔记中,我们研究表面上有合理连接的叶子的叶。我们的主要结果是在曲面上存在一个偏振,使得切丛相对于这个偏振的Harder-Narasimhan过滤得到曲面的最大有理商。
---
英文标题:
《Rationally connected foliations on surfaces》
---
作者:
Sebastian Neumann
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this short note we study foliations with rationally connected leaves on surfaces. Our main result is that on surfaces there exists a polarisation such that the Harder-Narasimhan filtration of the tangent bundle with respect to this polarisation yields the maximal rationally quotient of the surface.
---
PDF链接:
https://arxiv.org/pdf/0811.3398