摘要翻译:
提出并解决了具有Cache支持的移动设备的集群设备到设备(D2D)网络的能量最小化问题。设备按照泊松群集过程(PCP)分布,并假定具有剩余内存,该剩余内存被用来主动地从库中缓存文件。设备可以从它们的高速缓存、从它们附近的邻近设备(集群)或作为最后手段从基站检索所请求的文件。在随机的prob-abilistic缓存方案下,文件按照特定的概率分布独立缓存,从而使网络的能量消耗最小化。得到了D2D复盖概率的闭式表达式。然后将能量消耗问题表示为缓存分布的函数,得到了最优概率缓存分布。结果表明,与常用的文件缓存方案相比,所提出的缓存分配方案降低了33%的能耗。
---
英文标题:
《On Minimizing Energy Consumption for D2D Clustered Caching Networks》
---
作者:
Ramy Amer and M. Majid Butt and Hesham ElSawy and Mehdi Bennis and
Jacek Kibi{\l}da and Nicola Marchetti
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Distributed, Parallel, and Cluster Computing 分布式、并行和集群计算
分类描述:Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
包括容错、分布式算法、稳定性、并行计算和集群计算。大致包括ACM学科类C.1.2、C.1.4、C.2.4、D.1.3、D.4.5、D.4.7、E.1中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We formulate and solve the energy minimization problem for a clustered device-to-device (D2D) network with cache-enabled mobile devices. Devices are distributed according to a Poisson cluster process (PCP) and are assumed to have a surplus memory which is exploited to proactively cache files from a library. Devices can retrieve the requested files from their caches, from neighboring devices in their proximity (cluster), or from the base station as a last resort. We minimize the energy consumption of the proposed network under a random prob- abilistic caching scheme, where files are independently cached according to a specific probability distribution. A closed-form expression for the D2D coverage probability is obtained. The energy consumption problem is then formulated as a function of the caching distribution, and the optimal probabilistic caching distribution is obtained. Results reveal that the proposed caching distribution reduces energy consumption up to 33% as compared to caching popular files scheme.
---
PDF链接:
https://arxiv.org/pdf/1808.0305