摘要翻译:
本文重点讨论了朗之万动力学的时间离散化,以及由此产生的不同数值积分格式。利用一种基于时间相关算子幂的方法,我们仔细地导出了Langevin动力学的数值格式,我们发现该格式与Ermak的建议等价,而不是简单地与velocity-Verlet算法的随机版本等价。然而,我们通过数值模拟验证了这两种算法给出了相似的结果,并共享相同的“弱二阶”精度。然后,我们应用同样的策略推导并检验了耗散粒子动力学(DPD)的两个数值格式。第一种算法在速度和精确度方面与目前可用的最佳算法相比较。
---
英文标题:
《Trotter Derivation of Algorithms for Brownian and Dissipative Particle
Dynamics》
---
作者:
Fabrice Thalmann and Jean Farago
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
This paper focuses on the temporal discretization of the Langevin dynamics, and on different resulting numerical integration schemes. Using a method based on the exponentiation of time dependent operators, we carefully derive a numerical scheme for the Langevin dynamics, that we found equivalent to the proposal of Ermak, and not simply to the stochastic version of the velocity-Verlet algorithm. However, we checked on numerical simulations that both algorithms give similar results, and share the same ``weak order two'' accuracy. We then apply the same strategy to derive and test two numerical schemes for the dissipative particle dynamics (DPD). The first one of them was found to compare well, in terms of speed and accuracy, with the best currently available algorithms.
---
PDF链接:
https://arxiv.org/pdf/709.0162