摘要翻译:
对信息科学的研究,即与危险事件(如新冠肺炎疫情)相关的信息的快速传播,需要多种科学学科的集成。infodemics中出现的动态有可能产生复杂的行为模式。为了做出适当的反应,对商业和经济领域来说,理解由此产生的动态是至关重要的。在短期内,动态可能会导致家庭支出的适应或购买行为转向在线供应商。从长远来看,投资、消费者行为和市场的变化是可以预期的。我们认为,这种动力来自于多种因素之间的复杂相互作用,如个人可获得的信息和错误信息,以及信念的形成和修正。(Mis)个人可以获得的信息,除其他外,受到专门为提供个性化信息而设计的算法的影响,而自动事实核查算法可以帮助减少传播错误信息的数量。个人(可能是错误的)信念的形成和修正以及个人对信息的事实核查和解释在很大程度上受到流行病和信息学中信息固有的语言模式以及情感、直觉和动机等其他因素的影响。我们认为,为了更深入地理解信息科学的动态,商业和经济学领域应该将计算机科学和信息系统、计算语言学和认知科学的观点整合到更广泛的经济系统(如组织、市场或产业)的背景中,并提出一种方法。
---
英文标题:
《Understanding the dynamics emerging from infodemics: A call to action
for interdisciplinary research》
---
作者:
Stephan Leitner, Bartosz Gula, Dietmar Jannach, Ulrike Krieg-Holz,
Friederike Wall
---
最新提交年份:
2020
---
分类信息:
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Mathematics 数学
二级分类:Dynamical Systems 动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
Research on infodemics, i.e., the rapid spread of (mis)information related to a hazardous event, such as the COVID-19 pandemic, requires the integration of a multiplicity of scientific disciplines. The dynamics emerging from infodemics have the potential to generate complex behavioral patterns. In order to react appropriately, it is of ultimate importance for the fields of Business and Economics to understand the dynamics emerging from it. In the short run, dynamics might lead to an adaptation in household spending or to a shift in buying behavior towards online providers. In the long run, changes in investments, consumer behavior, and markets are to be expected. We argue that the dynamics emerge from complex interactions among multiple factors, such as information and misinformation accessible for individuals and the formation and revision of beliefs. (Mis)information accessible to individuals is, amongst others, affected by algorithms specifically designed to provide personalized information, while automated fact-checking algorithms can help reduce the amount of circulating misinformation. The formation and revision of individual (and probably false) beliefs and individual fact-checking and interpretation of information are heavily affected by linguistic patterns inherent to information during pandemics and infodemics and further factors, such as affect, intuition and motives. We argue that, in order to get a deep(er) understanding of the dynamics emerging from infodemics, the fields of Business and Economics should integrate the perspectives of Computer Science and Information Systems, (Computational) Linguistics, and Cognitive Science into the wider context of economic systems (e.g., organizations, markets or industries) and propose a way to do so.
---
PDF链接:
https://arxiv.org/pdf/2007.12226