摘要翻译:
本文研究度量图的某些模空间的同伦型。更确切地说,我们证明了使顶点上有$n$标记的属1的度量图等距类参数化的空间$MG_{1,n}^V$与具有$n$标记点的属1的热带曲线的模空间$TM_{1,n}$是同伦等价的。我们的证明是通过提供一系列显式同伦来进行的,其中关键作用是所谓的扫描同伦。我们猜想我们的结果推广到任意亏格的情形。
---
英文标题:
《Moduli spaces of metric graphs of genus 1 with marks on vertices》
---
作者:
Dmitry N. Kozlov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we study homotopy type of certain moduli spaces of metric graphs. More precisely, we show that the spaces $MG_{1,n}^v$, which parametrize the isometry classes of metric graphs of genus 1 with $n$ marks on vertices are homotopy equivalent to the spaces $TM_{1,n}$, which are the moduli spaces of tropical curves of genus 1 with $n$ marked points. Our proof proceeds by providing a sequence of explicit homotopies, with key role played by the so-called scanning homotopy. We conjecture that our result generalizes to the case of arbitrary genus.
---
PDF链接:
https://arxiv.org/pdf/0809.4364