摘要翻译:
本文在广义部分线性模型下,对已知的分布函数F和连接函数h,引入了参数分量和非参数分量的一族稳健估计,其中数据为$y_i(\mathbf{x}_i,t_i)\sim F(\cdot,\mu_i)$,具有$\mu_i=h(\eta(t_i)+\mathbf{x}_i^{$\mathrm{T}$}\beta)$,证明了$\beta$的估计是根n一致的和渐近正态的。通过Monte Carlo研究,将这些估计量与经典估计量的性能进行了比较。
---
英文标题:
《Robust estimates in generalized partially linear models》
---
作者:
Graciela Boente, Xuming He, Jianhui Zhou
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
In this paper, we introduce a family of robust estimates for the parametric and nonparametric components under a generalized partially linear model, where the data are modeled by $y_i|(\mathbf{x}_i,t_i)\sim F(\cdot,\mu_i)$ with $\mu_i=H(\eta(t_i)+\mathbf{x}_i^{$\mathrm{T}$}\beta)$, for some known distribution function F and link function H. It is shown that the estimates of $\beta$ are root-n consistent and asymptotically normal. Through a Monte Carlo study, the performance of these estimators is compared with that of the classical ones.
---
PDF链接:
https://arxiv.org/pdf/708.0165