摘要翻译:
本文提出了一种适用于股票市场在线交易的通用算法,该算法的渐近性能至少与任何平稳交易策略一样好,该策略使用给定RKHS(再生核Hilbert空间)的边信息的固定函数计算每一步的投资。利用一个通用核,我们将这一结果推广到任何连续平稳策略。在这个学习过程中,交易者通过一个随机的、经过充分校准的算法所做的预测,理性地选择他的赌注。我们的策略是基于Dawid的用更一般的检查规则进行校正的概念,以及对Kakade和Foster的随机舍入算法的一些修改,以计算校正良好的预报。在RKHS中,我们将随机校正方法与Vovk的防御性预测方法相结合。与统计理论不同的是,股票价格没有随机假设。我们在历史市场上的实证结果提供了强有力的证据,如果忽略交易成本,这种类型的技术交易可以“战胜市场”。
---
英文标题:
《Universal Algorithm for Online Trading Based on the Method of
Calibration》
---
作者:
Vladimir V'yugin and Vladimir Trunov
---
最新提交年份:
2014
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized well-calibrated algorithm. Our strategy is based on Dawid's notion of calibration with more general checking rules and on some modification of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. We combine the method of randomized calibration with Vovk's method of defensive forecasting in RKHS. Unlike the statistical theory, no stochastic assumptions are made about the stock prices. Our empirical results on historical markets provide strong evidence that this type of technical trading can "beat the market" if transaction costs are ignored.
---
PDF链接:
https://arxiv.org/pdf/1205.3767