摘要翻译:
设G为连通代数群,设[G,G]为其交换子群。本文证明了Drinfeld关于[G,G]的连通etale群覆盖H存在性的一个猜想,该猜想具有以下性质:G的每个中心扩张通过有限etale群格式在H上分裂,G的交换子映射提升到H。此外,我们还证明了在H的自然作用下G的商栈是G映射到的泛Deligne-Mumford Picard栈。
---
英文标题:
《Stacky Abelianization of an Algebraic Group》
---
作者:
Masoud Kamgarpour
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let G be a connected algebraic group and let [G,G] be its commutator subgroup. We prove a conjecture of Drinfeld about the existence of a connected etale group cover H of [G,G], characterized by the following properties: every central extension of G, by a finite etale group scheme, splits over H, and the commutator map of G lifts to H. We prove, moreover, that the quotient stack of G by the natural action of H is the universal Deligne-Mumford Picard stack to which G maps.
---
PDF链接:
https://arxiv.org/pdf/0711.3023