楼主: 可人4
221 0

[计算机科学] 用于树搜索的高斯过程土匪:理论及应用 折扣MDPs中的规划 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
46.5432
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24566 点
帖子
4099
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-29 11:20:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
基于高斯过程用于Bandit问题的最新理论进展,我们提出并分析了一种新的树搜索算法GPTS。我们考虑树路径作为臂,我们假设目标/奖励函数是从GP分布中提取的。观测数据后的后验均值和方差被用来定义函数值的置信区间,我们依次扮演具有最高置信上限的臂。我们给出了GPTS的一个有效实现,并通过确定树路集合上核矩阵特征值的衰减率来调整以前的后悔界。在由树的节点索引的二叉向量特征空间中,我们考虑了两个核:线性核和高斯核。遗憾以迭代次数T的平方根增长,直到一个对数因子,常数随着高斯核宽度的增大而提高。我们侧重于T的实用值,小于臂数。最后,通过将报酬建模为独立高斯过程的折现和,我们将GPTS应用于折现马尔可夫决策过程的开环规划。我们报告了与OLOP算法相似的遗憾范围。
---
英文标题:
《Gaussian Process Bandits for Tree Search: Theory and Application to
  Planning in Discounted MDPs》
---
作者:
Louis Dorard and John Shawe-Taylor
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  We motivate and analyse a new Tree Search algorithm, GPTS, based on recent theoretical advances in the use of Gaussian Processes for Bandit problems. We consider tree paths as arms and we assume the target/reward function is drawn from a GP distribution. The posterior mean and variance, after observing data, are used to define confidence intervals for the function values, and we sequentially play arms with highest upper confidence bounds. We give an efficient implementation of GPTS and we adapt previous regret bounds by determining the decay rate of the eigenvalues of the kernel matrix on the whole set of tree paths. We consider two kernels in the feature space of binary vectors indexed by the nodes of the tree: linear and Gaussian. The regret grows in square root of the number of iterations T, up to a logarithmic factor, with a constant that improves with bigger Gaussian kernel widths. We focus on practical values of T, smaller than the number of arms. Finally, we apply GPTS to Open Loop Planning in discounted Markov Decision Processes by modelling the reward as a discounted sum of independent Gaussian Processes. We report similar regret bounds to those of the OLOP algorithm.
---
PDF链接:
https://arxiv.org/pdf/1009.0605
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:高斯过程 MDP DPS distribution Presentation algorithm 理论 应用 Processes 高斯

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 22:02