摘要翻译:
不可约实五次曲线有42类实奇点,可约实五次曲线有49类实奇点。不可约实五次曲线的实奇点分类最初是由Golubina和Tai提出的。不可约复五次曲线有28类奇点,可约复五次曲线有33类奇点。我们利用计算机代数系统Maple给出了完整的分类和证明。我们阐明了分类是基于计算足够的Puiseux展开来分离分支的。因此,证明的一个主要组成部分包括一系列可以用Maple很好地完成的大型符号计算。
---
英文标题:
《Singular Points of Real Quintic Curves Via Computer Algebra》
---
作者:
David A. Weinberg and Nicholas J. Willis
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
There are 42 types of real singular points for irreducible real quintic curves and 49 types of real singular points for reducible real quintic curves. The classification of real singular points for irreducible real quintic curves is originally due to Golubina and Tai. There are 28 types of singular points for irreducible complex quintic curves and 33 types of singular points for reducible complex quintic curves. We derive the complete classification with proof by using the computer algebra system Maple. We clarify that the classification is based on computing just enough of the Puiseux expansion to separate the branches. Thus, a major component of the proof consists of a sequence of large symbolic computations that can be done nicely using Maple.
---
PDF链接:
https://arxiv.org/pdf/0807.0010