摘要翻译:
在以前的一篇论文中,我们提出了一个公式来计算一些toric变体的Gromov-Witten和Welschinger不变量,根据称为楼板图的组合对象。本文在热带几何学框架下,在环境变化为复杂曲面的情况下,给出了详细的证明,并给出了一些使用楼层图计算的例子。与任意尺寸相比,对尺寸2的关注是由楼层图的特殊组合引起的。在此维中,我们讨论了一个一般的复曲面情形:曲线由任意点阵多边形给出,并包括具有共轭点对的Welschinger不变量的计算。另请参见\cite{FM},以了解射影情况下楼层图的组合处理。
---
英文标题:
《Floor decompositions of tropical curves : the planar case》
---
作者:
Erwan Brugalle, Grigory Mikhalkin
---
最新提交年份:
2019
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
In a previous paper, we announced a formula to compute Gromov-Witten and Welschinger invariants of some toric varieties, in terms of combinatorial objects called floor diagrams. We give here detailed proofs in the tropical geometry framework, in the case when the ambient variety is a complex surface, and give some examples of computations using floor diagrams. The focusing on dimension 2 is motivated by the special combinatoric of floor diagrams compared to arbitrary dimension. We treat a general toric surface case in this dimension: the curve is given by an arbitrary lattice polygon and include computation of Welschinger invariants with pairs of conjugate points. See also \cite{FM} for combinatorial treatment of floor diagrams in the projective case.
---
PDF链接:
https://arxiv.org/pdf/0812.3354