摘要翻译:
本文研究了具有3阶非辛自同构的K3曲面。特别地,我们对这类自同构的固定轨迹的拓扑结构进行了分类,并证明了它决定了上同调的作用。这使得我们可以描述模空间的结构,并表明它有三个不可约的分量。
---
英文标题:
《Non-symplectic automorphisms of order 3 on K3 surfaces》
---
作者:
Michela Artebani and Alessandra Sarti
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we study K3 surfaces with a non-symplectic automorphism of order 3. In particular, we classify the topological structure of the fixed locus of such automorphisms and we show that it determines the action on cohomology. This allows us to describe the structure of the moduli space and to show that it has three irreducible components.
---
PDF链接:
https://arxiv.org/pdf/0801.3101