摘要翻译:
利用Cortez引入的奇点分解和Polo引起的Kazhdan-Lusztig多项式的一种计算方法,证明了Billey和Braden刻画置换w的猜想,其中Kazhdan-Lusztig多项式P_{id,w}(q)=1+q^h。
---
英文标题:
《Permutations with Kazhdan-Lusztig polynomial P_{id,w}(q) = 1 + q^h》
---
作者:
Alexander Woo, Sara Billey, Jonathan Weed
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial P_{id,w}(q)=1+q^h for some h.
---
PDF链接:
https://arxiv.org/pdf/0809.2374