摘要翻译:
我们通过表示叠的群上微分形式的非交换代数研究了etale叠上有联系的gerbes。然后我们描述了任何这样的代数上的模的DG-范畴,我们声称它代表了所讨论的gerbe上的相干解析束的导出范畴的DG-增强。这个范畴可以用来短语和证明gerbes和其他非交换空间之间的Fourier-Mukai型对偶。作为该理论的应用,我们证明了环面上具有平坦连接的gerbe对偶(在类似于Fourier-Mukai对偶或T对偶的意义上)是非交换全纯对偶环面上的gerbe。
---
英文标题:
《Mukai duality for gerbes with connection》
---
作者:
Jonathan Block and Calder Daenzer
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study gerbes with connection over an etale stack via noncommutative algebras of differential forms on a groupoid presenting the stack. We then describe a dg-category of modules over any such algebra, which we claim represents a dg-enhancement of the derived category of coherent analytic sheaves on the gerbe in question. This category can be used to phrase and prove Fourier-Mukai type dualities between gerbes and other noncommutative spaces. As an application of the theory, we show that a gerbe with flat connection on a torus is dual (in a sense analogous to Fourier-Mukai duality or T-duality) to a noncommutative holomorphic dual torus.
---
PDF链接:
https://arxiv.org/pdf/0803.1529