摘要翻译:
对于宽带频谱感知,压缩感知作为一种解决方案被提出,以加快高维信号的感知速度和降低计算复杂度。压缩感知包括从稀疏信号中获取基本信息,并在接收端基于有效的采样矩阵和重构技术进行恢复。压缩感知需要一个鲁棒的采样矩阵和一种高效的重构技术,以处理信号的不确定性,提高信号的捕获性能,减少感知和重构过程中的随机性。在本文中,我们提出了一种结合循环矩阵和贝叶斯模型优点的方法。该方法已经实现,并得到了广泛的测试,其结果已经与基于几个度量的循环矩阵或随机矩阵的l1范数最小化的结果进行了比较。这些度量是均方误差、重构误差、相关性、恢复时间、采样时间和处理时间。结果表明,我们的技术是快速和有效的。
---
英文标题:
《Bayesian Compressive Sensing with Circulant Matrix for Spectrum Sensing
in Cognitive Radio Networks》
---
作者:
Fatima Salahdine, Naima Kaabouch, Hassan El Ghazi
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
For wideband spectrum sensing, compressive sensing has been proposed as a solution to speed up the high dimensional signals sensing and reduce the computational complexity. Compressive sensing consists of acquiring the essential information from a sparse signal and recovering it at the receiver based on an efficient sampling matrix and a reconstruction technique. In order to deal with the uncertainty, improve the signal acquisition performance, and reduce the randomness during the sensing and reconstruction processes, compressive sensing requires a robust sampling matrix and an efficient reconstruction technique. In this paper, we propose an approach that combines the advantages of a Circulant matrix with Bayesian models. This approach is implemented, extensively tested, and its results have been compared to those of l1 norm minimization with a Circulant or random matrix based on several metrics. These metrics are Mean Square Error, reconstruction error, correlation, recovery time, sampling time, and processing time. The results show that our technique is faster and more efficient.
---
PDF链接:
https://arxiv.org/pdf/1802.03457