摘要翻译:
我们建立了一个用于时间序列预测的贝叶斯中值自回归(BayesMAR)模型。该方法在中值处采用时变分位数回归,与广泛使用的基于均值的方法相比,继承了中值回归的鲁棒性。受Bayesian分位数回归中工作的Laplace似然方法的启发,BayesMAR采用了与自回归模型具有相同结构的参数模型,通过将高斯误差改变为Laplace误差,从而为时间序列预测提供了一种简单、鲁棒和可解释的建模策略。我们用马尔可夫链蒙特卡罗估计模型参数。贝叶斯模型平均用于解释模型的不确定性,包括自回归顺序的不确定性,以及贝叶斯模型选择方法。通过仿真和实际数据应用,说明了所提出的方法。在美国宏观经济数据预测中的应用表明,在包含点和概率预测的各种损失函数下,BayesMAR与选择的基于均值的方案相比,具有良好的预测性能。所提出的方法是通用的,可以用来补充建立在自回归模型上的丰富的方法。
---
英文标题:
《Bayesian Median Autoregression for Robust Time Series Forecasting》
---
作者:
Zijian Zeng, Meng Li
---
最新提交年份:
2020
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models.
---
PDF链接:
https://arxiv.org/pdf/2001.01116