摘要翻译:
由J.Li和Y.H证明的共切引理。Kiem说,当模量有一个完美的阻塞理论时,本征法向锥位于阻塞束的任何共切的核内。通过定义点上格式的高切向量,构造K.Behrend和B.Fantechi导出的Kodaira Spencer映射,证明了无完全阻塞理论条件下的共节引理的一个导出形式。作为应用,我们在locall泛族存在的前提下,给出了Kodaira原理textit{环境上同调湮没阻塞}(半正则性)的一个简短证明。
---
英文标题:
《Derived Kodaira Spencer map, Cosection lemma, and semiregularity》
---
作者:
Huai-Liang Chang
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
The cosection lemma proved by J. Li and Y.H. Kiem said the intrinsic normal cone lies inside the kernel of any cosection of the obstruction sheaf when the moduli has a perfect obstruction theory. With a definition of higher tangent vectors of a scheme at a point, and a construction of the derived Kodaira Spencer map by K. Behrend and B. Fantechi, we prove a derived version of cosection lemma without perfect obstruction theory condition. As an application we give a short proof of the Kodaira's Principle \textit{ambient cohomology annihilates obstruction} (semiregularity), assuming the existence of locall universal family.
---
PDF链接:
https://arxiv.org/pdf/0808.0988