|
(26)F.2.2对任意一对独立随机向量X和Y新感染的条件方差,我们haveVar(X,Y)=E(XX)E(Y)-E(X)E(X)E(Y)E(Y)=Var(X)Var(Y)+Var(X)E(Y)E(Y)+Var(X)E(X)E(X)E(X)。因此:Var(it-1+Flowcom,I,t-1+Flowtrav,I,t-1)(st-1+Flowcom,S,t-1+Flowtrav,S,t-1)it-1,ST-1=VAR flowcom,I,T-1=VAR flowcom,S,T-1=VAR flowcom,S,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR flowcom,I,T-1=VAR Flowtrav,I,T-1=IT=1(Id+ΩT-1)ST-1=ST-1=1(Id+ΩT-1)+VAR flowcom,S,T-1=IT-1,τ)+C(Wtrav,t-1,IT-1,1)C(Wcom,T-1,ST-1,τ)+C(Wtrav,t-1,ST-1,1)+C(Wcom,T-1,IT-1,τ)+C(Wtrav,t-1,IT-1,1)(Id+ΩT-1)ST-1 ST-1(Id+ΩT-1)+C(Wcom,T-1,ST-1,τ)+C(Wtrav,t-1,ST-1,1)(Id+ΩT-1)IT-1 IT-1(Id+ΩT-1)=:D(Wcom,T-1,Wtrav,T-1,ST-1,IT-1,τ,ΩT-1),其中ΩT-1=ΩTrav,T-1+Ωcom,T-1和whereD(W,W,S,我,τ,Ω)=C(W,我,τ)+C(W,我,1)C(W,S,τ)+C(W,S,1)+C(W,我,τ)+C(W,我,1)(Id+Ω)SS(Id+Ω)+C(W,S,τ)+C(W,S,1)(Id+Ω)II(Id+Ω),(27)函数C在(23)中被定义。f.2.3感受性的条件方差让我们使用符号:I*t=it+Flowcom,I,t+Flowtrav,I,tand S*t=St+Flowcom,S,t+Flowtrav,S,t。使用总方差定律:vart-1(St)=vart-1(et-1(stit-1,st-1,Flowcom,I,t-1,Flowcom,S,t-1,Flowtrav,I,t-1,Flowtrav,Flowcom,I,t-1,Flowcom,S,t-1,Flowtrav,I,t-1,Flowtrav,S,t-1,Flowtrav,S,t-1)=VART-1θβ,t-1βt-1 p I,t-1 S,t-1+et-1 Dθβ,t-1βt-1 p I,t-1 S,t-1=θβ,t-1βt-1 p D(Wcom,t-1,Wtrav,t-1,st-1,it-1,τ,Ωt-1)+Dθβ,t-1βt-1 p[(Id+ΩT-1)IT-1][(Id+ΩT-1)St-1],让我们用θT-1表示前一个条件方差。我们有:θT-1=VART-1(St):=θβ,T-1βT-1 Pθβ,T-1βT-1 P D(Wcom,T-1,Wtrav,T-1,ST-1,IT-1,τ,ΩT-1)+Dθβ,T-1βT-1 P[(Id+ΩT-1)IT-1][(Id+ΩT-1)ST-1],(28)其中ΩT-1=Ωcom、T-1+Ωtrav、T-1和函数D由(27)修改。F.2.4状态向量的条件方差表示:V(St-1,IT-1):=VART-1DTSTITTβT=(29)δ(1-δ)d(IT-1)0-δ(1-δ-γ)d(IT-1)-δγd(IT-1)00θT-1-θT-100-δ(1-δ-γ)d(IT-1)-θT-1θT-1+vD(IT-1)-γ(1-γ-δ)d(IT-1)0-δγd(IT-1)0-γ(IT-1)0-γ(1-γ-δ)d(IT-1)0-γ(1-γ-δ)d(IT-1)(γ-γ)d(IT-1)00 0 0 0Ωβ、T-1,其中Ωβ、T-1=σtd(pβT-1)·∑·d(pβT-1),其中θ由公式(28)决定,F.3 Jacobian矩阵的推广Kalman filterneter实现我们在此给出了推广Kalman filternetric递归的Jacobian计算公式。表示为J=ET-1[Dt,圣,它,Rt,βt]/[dt-1,ST-1,IT-1,RT-1,βT-1],我们有:J=Id 0δId 0 00 Id 0 0 00 0(1-δ-γ)Id 0 00 0γId Id 00 0 0 0(1-κ)Id+-Id+Idθs,T-1θm,T-1βT-1 p([Id+ΩT-1]IT-1)([Id+ΩT-1]ST-1)[DT-1,ST-1,IT-1,RT-1,βT-1]。(30)偏导数矩阵由:θs,T-1θm,T-1βT-1p([Id+ΩT-1]IT-1)([Id+ΩT-1]ST-1)[DT-1,ST-1,IT-1,RT-1,βT-1]=(Id+ΩT-1)×Dθs,T-1θm,T-1βT-1p([Id+ΩT-1]IT-1)(Id+ΩT-1)×Dθs,T-1θm,T-1βT-1 p([Id+ΩT-1]ST-1)Dθs、T-1θm、T-1 P([Id+ΩT-1]IT-1)([Id+ΩT-1]ST-1)。(31)γ0.07δ0.0004κ0.001[0.05,0.1][0.0003,0.0007]β0.16σ0.05ρ0.49θ低0.64θ低0.10θ低0.58[0.32,0.82][0.05,0.55][0.29,0.79]τcom 0.36τtrav 4.00表2:参数值。括号中的值给出了附录E.mar、May、Jul、se、novus.中我们的结果的敏感性分析所用的替代参数。感染(对数刻度)1001000100001E+051E+061E+071E+08BaselineCounterfactual,联邦面具授权,3/19-11/30反事实,任何州都没有面具授权。
|