|
0(),n n nuk I U k (17) Where 1ni是(n+1)维单位矩阵;10n是(n+1)维零矩阵;U(k)=[uT(k/k),…,uT(k+m-1/k)]这是一组预测控制,定义于带准则的二次规划问题的求解 (/)2() (18) 在约束条件下(元素不等式)min max()()()(),U k S k U k U k k(19) 其中min 2 1 2 1()[(),0,…,0],TTnnU k 最大值最大值211()[(),0,…,0],TTnnU k MinMax11MaxMin22MaxMaxMinMinMinMax0Max1()()。。。。。。( ) , ( ) .()()()0nnnukukuk k V kVkuk()Sk、H(k)、G(k)、F(k)是该形式的块矩阵 21()诊断(),0,。。。,0,n n n n n k S k 11 12 121 22 212( ) ( ) ... ( )( ) ( ) ... ( )( ) ,... ... ... ...( ) ( ) ... () 12( ) ( ) ( ) ... (),毫克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克 12( ) ( ) ( ) ... (),mF k F k F k这些块满足下面的递归方程。。。0 00 1 ... 0 0... ... ... ... ...( ) ,0 0 ... 1 01 1 ... 1 10 0 ... 0 1Sk ()110()(,1)diag{()}(),nTt T q qt q j jqjH k R k T q m T e P k T (20) ()10 011()()diag{()}(),TTf t t t q rtf r qqrH k A q m f e P P e B k t B k f t f (21)((),Ttf FTK TF(,1,),tfm(22)101()(),t qtqgk A Q m t P k t (23)201()(),TQQF k Q m t e P k B k t (24)211()(1)1,qt A qt 1(0)1,Q2.2.1()(1)(,),Q t AQ t R k m t 21(0)(,),Q R k mR(k,t)=2V(k+t)+ρ(k,t),(1,),tm11,Ar 10,...,0,1,0,...,0,(1,),qeq( ) ( ) ( ) ( )0 1 1 2 1 1 1 2( ) ...
|